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TWO FORMULAS FOR NUMERICAL INDEFINITE INTEGRATION 

SEYMOUR HABER 

ABSTRACT. We derive two formulas for approximating the indefinite integral 
over a finite interval. The approximation error is 0(c-cv') uniformly, where 
m is the number of integrand evaluations. The integrand is required to be 
analytic in the interior of the integration interval, but may be singular at the 
endpoints. Some sample calculations indicate that the actual convergence rate 
accords with the error bound derived. 

1. INTRODUCTION 

The formulas we propose are 
s ~ h N 79S 

] g(u) du = Z ig'(kh) * g(VI(kh))* Si (7h - k) 
(A) -1 k=-Nh 

+ -I* + O(N1/2e-V7daN) 

and 

L g(u) du = h 1 : q'(jh) * g(qI(jh)) * uk-j * sinc (h(s) -k) 

(B) +I* (?(s)- E (-- +h1(q(kh))) sinc ( h k)) 

+ O(N3/2e-V7daN). 

In each formula 
N 

I* = h 1: q'(kh)g(q1(kh)) 
k=-N 

and 

aN' 
d and a are parameters related to the integrand g, and V and fo are the 
functions i(x) = tanh(x/2), ~o(x) = log((l +x)/(l -x)). The function Si is 
the sine integral: 

Si(x) j sint dt; 
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an, for n an integer, is (1 /Z) Si(n7), and "sinc(x)" is a common engineering 
notation for the function sin7tx. Finally, q is an auxiliary function whose 
required properties are described below; an example is 1(x) = (1 + x)/2. 

The attractive thing about these complicated formulas is their accuracy. Us- 
ing only 2N + 1 values of the integrand g, they approximate the indefinite 
integral uniformly within O(e-c4) for some c = c(g). This fast convergence 
rate is characteristic of a large class of numerical approximations developed by 
Frank Stenger and his school-see [7] for an introduction and survey. Formu- 
las (A) and (B) belong to this class and are related to formula (4.58) of [7] and 
Theorem 3.3 of [3]. 

For such a fast convergence rate the integrand g must be very smooth, and 
indeed we require it to be analytic on (-1, 1) . But g is allowed to be singular 
at ? 1 , with some restriction on its growth rate as x -+ 1 or -1 . This contrasts 
with classical requirements such as "g E C2" or "g E C4" to have convergence 
rates O(N-2) and O(N-4) for the trapezoid rule and Simpson's rule. The 
requirement of analyticity seems much more stringent, but in practice is not 
likely to be restrictive at all. Functions that come up for numerical integration 
are almost always analytic with isolated singularities, and it is usually possible 
to arrange that the integration take place on intervals where the singularities are 
only at endpoints. 

Formulas (A) and (B) are based on the standard strategy for numerical quad- 
rature: approximate the integrand by a function that is easy to integrate, and 
integrate the latter. In this case the approximation is by linear combinations 
of translates of silnX , whose integral is not elementary. Both formulas involve 
values of the sine integral, formula (B) through the quantities (k-j. The sine 
integral is one of the most thoroughly studied of the "higher transcendental 
functions" and is not hard to evaluate. Good methods are given in [6] and in 
the Appendix to this paper. 

The analysis leading to these formulas takes place most naturally on the 
interval (-oc, oc) rather than (-1, 1). The central part of the analysis is 
largely taken from a paper by McNamee, Stenger, and Whitney [4] and from 
later developments by Stenger and his students. I shall give a full derivation of 
(A) and (B) for the convenience of the reader, as it seems that even the central 
part has appeared in print only incompletely. 

2. DERIVATION OF (A) 

We start from the contour integral 

1 f(z)dz 
27ri JLn - ( t) sinh 

where Ln, is the rectangular contour whose vertical sides are at x = 
+(n + 1/2)h (n a positive integer) and whose horizontal sides are at y = 
?(d - e) . The parameters h and d are positive. We assume 

(H1 ) f is analytic in the strip IYI < d. 

We suppose that the real number t is < nh in absolute value, and evaluate the 
integral by residues. The singularities inside Ln, are at z = t with residue 
f(t)/ sin(7t/h) and at z = kh, k any integer between -n and n, with residue 
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(if t : kh) 
( h f(kh) 

7 kh -t 
After some algebra we get the equation 

f(t) = j f(kh)sinc (h-k) +Rn&(t), 

(1) k=-n 

Rn,e( =1 si (7(t~\ f(z)dz 
7t= sin h JL (Z - t) sin(7rz/h) 

It is immediate that (1) holds also for t = kh, Ikl < n, and so for all t in 
[-nh, nh]. We now further assume that 

for small positive e each of the integrals f20. If(x + i(d - e))I dx 

exists, and these integrals are bounded in e; 

and 

(H3) for each small positive e the integral f"- j If(x + iy) I dy 

is a bounded function of x. 

Let n -+ oc in (1). The integrals over the vertical side of Ln , approach zero, 
and the integrals over the horizontal sides approach 

[00 f(x + i(d -ce)) dx 
J2 (x - t ? i(d - e)) sin I 

(x + i(d -e)) 

We state this as 

Lemma 1. If f satisfies conditions (H1), (H2), and (H3), then 
00 (t N 1 7( t 

(3) f(t) = E f(kh)sinc -ki + *sin .V(L-I+) 
k=-oo 

for all real t. 

Conditions (H2) and (H3) are somewhat obscure. In the transition to the 
interval (-1, 1) they shall be replaced by simpler conditions. 

We now integrate (3) to get 
x ~~~00 

f(t) dt = E f(kh) sinc (t -k) dt + 2i(R- -R+), 
(4) k=-oo 

R~~~f 7(tf f(s+?i(d-)dst 
A_ i h XS3 (s - t ? i(d -e)) sinh-SJ i(d -e)) 

The interchange of integration and summation is enabled by imposing a new 
condition (which we shall also need below) on f: 

there is a constant a > 0 such that for x real 

(H4) ff(x) = O(e-Ixli) as lxl -- oo. 

We can exchange the order of integrations in R?, since 
00 f(s + i(d -ce)) ds -*0 

JB (s - t + i(d -ce)) sin 7s (s + i(d -ce)) 
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as B -+ oo, uniformly for t E [-A, x] (using condition (H2)), and the same 
holds for the integral from -oc to -B. The resulting inner integral 

[x sin(7t/h) dt 
A s - t ? i(d -ce) 

is 0(h) uniformly in A, x, s, and e. Since 

sin 7(s+ i(d -ce)) > sinh (a h) > le(de)/h h ~ ~~~h 2 
we conclude that 

IR?I < Che(d-e)/h J f(s + i(d - e))I ds. 
-00 

Letting A -* oo and then e -* 0 in (4), we have that 

| f(t) dt = h 1: f (kh). @( + 7r Si - - -7rk) + 0(he 7rdlh) 
k=-oo 

as h -+ 0. Now we use (H4) (and the boundedness of Si) to write 

f(t) dt=h Nf(kh) ( + Si - - 7rk + 0(he-"d/h) 
k=-N 

+ 0(h-le-aNh) 

as h -+ 0 and Nh o-* 0. Setting 

(5) h = h(N)= a 

nearly balances the two error terms and we have: 

Theorem 1. If f satisfies conditions (H1), (H2), (H3), and (H4), and h is 
defined by (5), then 

rx Nr 
] f(t) dt = h f (kh) ( 2 + (i k N) 

k=-N 

as N -* oo, uniformly for x E (-o0, o0). 

(We could have, by modifying (5), eliminated the N' factor in the error 
term in the theorem. Calculations done with the modified h do not, however, 
show a consistent advantage for practical values of N.) 

The transition to (-1, 1) is made via the change of variables 

w = q(z) = tanh z/2. 

With z = x+iy and w = u+iv, V takes the line -0o < x < o0 monotonically 
onto -1 < u < 1 . Each horizontal line y = 3 , with I 5I <7i , becomes a circular 
arc going from w = -1, through w = i tan(3 /2), to w = + 1; the center and 
radius of the circle it is part of are -i cot 3 and cosec 3 , respectively. A 
vertical line segment 
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becomes a circular arc whose center and radius are 
1 +e2x 2e___ 

(6) 1 - sgn (x) and 1 2e sgn x) 
-e- 

x ~ ~ ~ -e-2x sn() 
respectively. 

The strip IYI < d (d < 7) is conformally mapped to the lenticular region 
Ad whose boundary consists of the two circular arcs that are the images of the 
lines y = d and y = -d. The vertical width of Ad is 2tan(d/2); the region 
A,/2 is the unit disk and A, is the whole w-plane, slit from -oc to -1 and 
from 1 to oc on the u-axis. 

We write 
rx rs 

J f(t) dt = g(u) du, 

using the change of variables u = qI(t). Then 

s = qi(x), x = (9(s) = log((l + s)/(l - s)), f(t) = g(,(t)) * '(t), 

and the equation in Theorem 1 becomes (A). 
Conditions (H1) and (H4) on f translate straightforwardly into the condi- 

tions 

(HI) g is analytic on Ad 

and 

(H ) there is a constant a > 0 such that for real u, g(u) = 0((l - u2)-I+a) 

as u -+ +1 from inside (-1, 1). 

The integral in condition (H3) becomes 

Xg(w) dwl, 

where Cx,e is the image under V of the vertical line segment 

z = x + iY, IYI < d -c; 

by (6) it is an arc of a circle of radius 2e-Hxl + O(e-2Ilx) and center +1 + 
O(e-2Ixl). So, if we require of g that 

g(W) = 0(1 1 - ) 

as w I +1 from inside Ad, then (H3) would be satisfied. However, we shall 
require the stronger condition 

(HI ) there is a constant a > 0 such that g(w) = 0(11 - 2 -I+a) 
3 as w -+ +1 from insideAd. 

This makes condition (H') unnecessary, and it also simplifies the translation 
of (H2)- 

Let Pa be the image under V of the line y = a, and let Pa, with > 0, 
be that part of Pa that lies outside circles of radius ,B centered at 1 and at -1 . 
The integrals in (H2) become 
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which surely exist once (H') is assumed. The condition (H') also implies that 
the contribution to (7) from the portion of P?(d-e) that lies within distance I. 
of either + 1 or -1 is bounded in c, for small ,B . Thus we need only assume 
that 

(H') for small ,B > 0 the integralsfp (d_ g(w) dw 

are bounded in e for 0 < e < d. 
To determine whether (H') is satisfied, for a given g that satisfies (Hi) and 
(HW), we need only consider singularities of g at points on the boundary of 
Ad other than + 1 and -1 . Furthermore, if d' is any positive number that is 
less than d, then (Hi) will automatically hold with d' in place of d. So we 
have 

Theorem 2. If g is analytic in Ad for some positive d < 7r and g(w) = 

0( 11 W2-Il+a) for some a > 0 as w I +1 from inside Ad, then 

j g(u) du = ff Nqi'(kh) * g(qI(kh)) * Si ( )-7rk) + I* 

+ O(N'12e-Vd'aN) 

uniformly in [-1, 1], where d' is any number in (0, d) and h = h(N) is 
defined by (5) with d' in place of d. Here, 

N 

(8) I* = h Ej qi'(kh)g(qi(kh)). 
k=-N 

We also have 

Theorem 2a. If 0 < d < Xr and a > 0, and g satisfies conditions (H1), (H2), 
and (H'), then (A) holds uniformly in [-1, 1], with h = h(N) defined by (5) 
and 1* defined by (8). 

3. DERIVATION OF (B) 

The point of formula (B) is to reduce the need for values of the sine integral; 
in (B) we use only the values Si(n7r), n an integer. These can be calculated 
more simply (see the -appendix) than general values of Si. 

We again work primarily in the context of integrals over the real line. In 
outline, we first set 

x 

F(x) = J f (t) dt 

and approximate F by an interpolation formula that uses evaluations of F at 
integral multiples of a parameter h. Then those values of F are themselves 
approximated using Theorem 1. 

We get our interpolation formula from Lemma 1 by bounding the remainder 
there and then truncating the infinite sum. In the integrals in (2) the numerator 
is in LI (-oo, oo) by (H2), and the integral of its absolute value is bounded. 
In addition, the first factor in the denominator is bounded away from zero uni- 
formly in x and t. The second factor there is greater than ce1(d-e)/h uniformly 
in x, where c is independent of e. So 

I+|1 = O(e -d/h) as h -- 0. 
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Imposing condition (H4) on f, we obtain 

f(t) = E f(kh) sinc 
t 

- k) + O(e-d/hh) + O(h-le-aNh) 

as h -+ , N -+oo. Using (5) to specify h, we then have 

Lemma 2. If f satisfies conditions (H1), (H2), (H3), and (H4), then 
N 

f(t) = E f(kh) sinc - k) + O(Nl/2e VdaN) 
k=-N/ 

uniformly in (-oo, oo), with h defined by (5). 

Now we define 

F(z) = F(x + iy) = f(t) dt + f(x + is) ds 
-00o 

for z in the strip IyI < d. We cannot however apply Lemma 2 directly to F, 
since F does not necessarily satisfy (H4). Indeed, since f satisfies (H4), 

F(x) = I + O(e-alx) as x +oo, 

where 

1=| f(t)dt 
-00 

may not be zero. We therefore introduce 

F* (z) = F(z) -I - (z), 
where 4 is an auxiliary function satisfying (H1) and the new condition 

for the same a > 0 as in (H4), 4(x) = O(e-alxl) as x - -oo 
(H5) and 4(x) = 1 + O(e-alxl) as x -+ +oo. 

(An example is 4(z) = 1/(1 + e-az).) The function F* satisfies (H1) and 
(H4) . 

In order to make F* satisfy (H2) and (H3) we require that f and 4' 

satisfy, in place of (H3), the stronger condition 

for any small positive c the function Vy (x) = fu$-j If(x + iy) I dy 

(H3a) is bounded and is in L'(-o0, o0). Furthermore, ffo V,(x)dx 

is bounded in c. 

That F* now satisfies (H2) and (H3) can be seen by writing, e.g., 

JIF*(x + i(d - e))I dx 
-00 

oo d-9 

- j F*(X) +j (f(x + iy) - I,'(x + iy)) dy dx 

r00 0o od-8 
< j IF*(x)I dx +j jI f(x +iy)I dydx 

oo0 d-8 

+ III * j Il'(x + iy)I dy dx. 
A00 o 

Applying Lemma 2 to F*, we obtain: 
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Lemma 3. Assume that f satisfies (HI), (H2), (H3a), and (H4), that 4 satisfies 
(H1) and (H5), and 4' satisfies (H3a), and that h is defined by (5) and 

vx {00 

F(x) = J f(t)dt and I= J f(t)dt. 
-00 -00 

Then 
N 

F(x) = ,F(kh) sinc (h - k) 
k=-N 

+ I. ( (~x )- kE- k sn - k) ) 

+ 0(N1/2eV-a). 

Now we use Theorem 1 to replace each F(kh) in the last equation by 

and I by 
N 

I*=h - f(jh). 
j=-N 

Each of the 2N + 1 replacements of an F(kh) introduces an error that is 
no greater than CN1/2e -~ta in absolute value; one constant C will do for 
all k's. Replacing I by I* introduces another such error, and the quantity 
multiplying I is itself 0(N) because 4 is bounded. Using the notation 

we have, after some algebra: 

Theorem 3. Assume that f satisfies (H1), (H2), (H3a), and (H4), that 4 sat- 
isfies (H1 ) and (Hs) and 4' satisfies (H3a), and that h is defined by (5). Then 

jf(t)dtxh N N 

Zh f(jh) (kj * sinc7(j -k) 

k=-N j- 

and~ ~ ~ I (4x-by,(h-2 in h-) 

+ 0(N3/2eV-da) 

uniformly for -oo <x < oo. Here, I* - h ZNNf(jh). If it is known that 

j f(t)dt= 0, 

-00N 

then I* may be replaced by 0. 
To get formula (B), we again use w = v(z) = tanh(z/2) and set f(t) = 

g(wh(t)), a'(t); and we also set 
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Conditions (Hi) and (H') on g imply conditions (H2), (H3a), and (H4) on 
f, and condition (Hi) on g is equivalent to condition (H1) on f . Similarly, 
(Hi) for q is equivalent to condition (H1) for 4. Condition (H5) on 4 is 
guaranteed by requiring that 

(H') q is continuous on [-1, 1] and (-1) = 0, (1) = 1 

and that q satisfy a Hblder condition of order a on [-1, 1]. In order to have 
4' satisfy (H3a), we impose condition (H') on i'; condition (H') for ,' and 
(H') for q together imply the Holder condition for 1. We conclude: 

Theorem 4a. If 0 < d < 7r and a > 0 and g satisfies conditions (H1), (H'), 
and (Hf), and q satisfies (Hi) and (H), and ,' satisfies (Hf), then (B) holds 
uniformly in [-1, 1], with h = h(N) defined by (5) and I* defined by (8). 

The conditions on q are not onerous. The function il(w) = (1 + w)/2 satis- 
fies the conditions for all d and any a < 1; the function i(w) = 
(2 + 3w - w3)/4 has q'(-1) = q'(1) = 0 and so satisfies the conditions for 
all d and any a < 2. 

As with Theorem 2, we can avoid dealing with condition (H') by accepting 
a smaller value of d in the error term. We state this as 

Theorem 4. If 0 < d < 7 and a > 0 and 
1) g is analytic in Ad and g(w) = 0(11 - W2l-1+a) as w - +1 from 

inside Ad; 

2) q is analytic in Ad and q(-1) = 0 and q(1) = 1; and i'(w) = 

0(l1 W21I- 1+a) as w I +1 from inside Ad, 

then 
s ~~N N ~ s 

] g(u)du = h ,j ,j yg'(jh) . g(qI(jh)) k-jas ( - -k) 
-1 ~~k=-N j=-N 

+ I (li(s) - N (ql(kh)) - - sinc ( - k)) 

+ O(N 3/2e- V7rda) 

uniformly in [-1, 1], where d' E (O, d) and h = h(N) is defined by (5) with 
d' in place of d. The constant I* is defined by (8); if 

g(u)du = 0, 

then I* may be replaced by zero. 

4. COMPUTATIONAL CONSIDERATIONS 

The double sum in (B) apparently involves 2N + 1 values of sine; but since 
the k occurring there is an integer, 

sinc(g(s) _k) = sink h -7rk) h (l )k h i i (s) sin 
7 rp(S) 7rk 9(s) -kh sln h ' 

/ h - 
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and the double sum can be written as 

fsin h Z Z (s) - kh 

This involves only one sine evaluation. 
Because of the double sum, (B) involves a good deal more arithmetic than 

(A), for a single value of s. But if the integral is to be computed for many 
values of s, we may rewrite the double sum as 

h2sn *~ o(S) N Sk 

7r h __ 9o(s) -kh' 
k=-N ) 

where 
N 

Sk = Z (_ 1)krk_ j q/(jh)g(qV(jh)), 
j=-N 

and note that the Sk are independent of s. So the Sk may be computed first, 
and then each new value of s requires the calculation of only a single sum. As a 
result, formula (B) is faster than formula (A) when many values of the indefinite 
integral are wanted, because each new value of s requires only a logarithm, a 
sine, and two very simple sums in (B), while in (A) we must calculate 2N+ 1 new 
values of the sine integral. In one of the examples presented below, formula (A) 
required roughly CMN3/2 seconds to calculate the integral for M values of s 
(C being a machine-dependent constant), while (B) required C(MN1/2 + N2/2) 
seconds. 

As has been remarked elsewhere ([5, p. 148], [2, p. 682]), some of the ab- 
scissas VI(jh) are very close to +1 when N is moderately large. Sometimes 
they are too close for the computer to distinguish them from + 1, and the inte- 
grand g may be infinite at + 1 . This difficulty might be avoided by going over 
to higher-precision arithmetic or by direct study of the function q'(x)g(y(x)) 
and its accurate calculation for large values of x. 

5. COMPUTATIONAL EXAMPLES 

We shall look at the results of applying formulas (A) and (B) to four in- 
tegrands, chosen to show the effects of different singularities. The integrands 
are 

gi (u) = 9 ' g2(U) =41 2log (I + u) 

1 ~~~2 
g3(U)_ 2 g4(U)= 1-. 

The constants were chosen to "normalize" the functions in the sense that 

Lg(u)I du = 1. 

The first and fourth functions have x-1/2- and x 1/2-type singularities at u = 
+1; the second function goes to infinity weakly, and the third has no singu- 
larities. It should be remarked that formulas (A) and (B) are not expected 
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to integrate g3 exactly; in contrast to the classical numerical integration for- 
mulas, no considerations of "degree of precision"-exactness for polynomial 
integrands-have entered into the present theory. 

A negative feature of our formulas is that they require adjustment to the 
integrand that is treated. The parameter h, used in the computation, is defined 
in terms of d and a, which are numbers describing some of the behavior of 
the integrand. For our four examples the appropriate values of a are clearly 
1/2 for gl, 1 for g3, and 3/2 for g4; it is not so clear what a to use for g2 . 
Any ca that is less than 1 will do, but 1 itself will not do. 

None of our four functions has singularities anywhere but at + 1, so at first 
thought it seems that d = 7r is appropriate to all of them. But in fact none 
of them satisfies condition (H') with d = 7r. That is because each contour 
P?(7,-g f is not bounded in length as e approaches zero. Its length is asymp- 
totic to 27r/e, so that it is immediate that g3 does not satisfy (Hi); and it is 
not hard to see that is also the case for the other g's. 

Of course, all four g's satisfy (Hi) for any d less than 7r. This makes the 
problem of applying Theorems 2a and 4a the same as that of applying Theorems 
2 and 4: all values of d less than a given do may validly be used, but not do 
itself if the error estimate in the theorem is to hold. What we shall do in practice 
is use do itself. 

Similarly, we shall use a = 1 for the integrand g2. 
We present the results of applying each formula with several values of N, in 

order to see its convergence behavior. 
Since the main factor in the error bound is e- V,tdaN we have used as succes- 

sive values of N the successive squares 1, 4, 9, 16, . If our error bounds 
represent the actual behavior of (A) and (B), this should make the errors de- 
crease by a factor of about eV"a as we go from each N to the next. The 
results of using formula (A) with integrands gl through g4 are in Tables 1 a 
through 4a, respectively; similarly with formula (B) and Tables lb through 4b. 

In each table "maxerr" denotes the maximum of the absolute value of the 
error of the approximation for those values of s for which the integral was 
calculated. Those were the 370 values 

S = - 0.999, -0.998, -0.997, ..., -0.9, -0.89, -0.88, 

0.87, ..., +0.91, +0.911, +0.912, ..., +0.999. 

TABLE l a 
N maxerr ratio 

1 5.92E-2 
4 5.80E-3 10.2 
9 6.67E-4 8.7 

16 7.58E-5 8.8 
25 8.45E - 6 9.0 
36 9.34E - 7 9.0 
49 1.03E-7 9.1 
64 1.13E-8 9.1 

TABLE 1 b 
N maxerr ratio 

1 1.08E-1 
4 1.70E-2 6.4 
9 2.09E-3 8.1 

16 2.36E-4 8.8 
25 2.63E - 5 9.0 
36 2.90E-6 9.1 
49 3.18E-7 9.1 
64 3.48E - 8 9.1 



290 SEYMOUR HABER 

TABLE 2a TABLE 2b 
N maxerr ratio N maxerr ratio 

1 1.67 1 1.67 
4 1.06E-2 15.8 4 1.06E-2 15.8 
9 6.01E-4 17.6 9 6.01E-4 17.6 

16 3.35E - 5 17.9 16 3.35E - 5 17.9 
25 1.77E - 6 19.0 25 1.77E - 6 19.0 
36 9.10E-8 19.4 36 9.10E-8 19.4 
49 4.55E - 9 20.0 49 4.55E - 9 20.0 
64 2.24E-10 20.3 64 2.24E-10 20.3 
81 1.08E-11 20.6 81 1.08E-11 20.6 

100 5.20E-13 20.9 100 5.20E-13 20.9 

TABLE 3a TABLE 3b 
N maxerr ratio N maxerr ratio 

1 7.82E-2 1 7.93E-2 
4 2.08E - 3 37.6 4 2.80E - 3 28.3 
9 1.03E-4 20.2 9 1.42E-4 19.7 

16 4.67E - 6 22.0 16 6.38E - 6 22.3 
25 2.11E-7 22.3 25 2.91E-7 21.9 
36 9.33E - 9 22.6 36 1.28E - 8 22.8 
49 4.11E-10 22.7 49 5.68E-10 22.5 
64 1.80E-11 22.8 64 2.48E - 11 22.9 
81 7.86E-13 22.9 81 1.09E- 12 22.8 

TABLE 4a TABLE 4b 
N maxerr ratio N maxerr ratio 

1 8.32E-2 1 9.84E-2 
4 1.42E-3 58.7 4 4.74E-3 20.8 
9 4.35E - 5 32.6 9 2.07E - 4 23.0 

16 1.16E-6 37.7 16 7.41E-6 27.9 
25 2.95E - 8 39.2 25 2.39E - 7 31.0 
36 7.30E-10 40.4 36 7.16E-9 33.3 
49 1.76E-11 41.5 49 2.05E-10 35.0 
64 4.20E-13 41.9 64 5.64E-12 36.3 

For each value of N, "ratio" denotes the ratio of maxerr for the previous 
value of N to maxerr for the current value. The calculations were done in 
double precision on a clone of the IBM PC, using an 8087 coprocessor; thus, 
about 16-significant-figure arithmetic was used. For each integrand g the results 
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are presented only for those values of N for which the approximation error 
was large compared to the likely roundoff error. In the case of integrand gl 
calculation with N > 81 was prevented by the "blowup" discussed at the end 
of the last section. 

It is clear that formula (A) gave somewhat more accurate results than (B), 
except for g2. The tabulated results for g2 are identical for the two formulas, 
but that is not because (A) and (B) gave identical errors for all values of s. 
Instead, each formula had its largest error, for g2, at s = 0; and at s = 0 
formulas (A) and (B) do give the same approximation when the integrand is an 
odd function. 

For gl we took d = Xr and a = 1/2, so that the quantity ev'd is 9.2. The 
values of "ratio" in Tables la and lb are quite close to 9.2 for the higher values 
of N. This indicates that the convergence behaviors of formulas (A) and (B) 
are, for this integrand, just what one might expect from the error bounds in our 
theorems, and that this behavior is seen clearly for moderate values of N. 

For g2, g3, and g4 the corresponding values of e are 23. 1, 23.1, and 
46.9, respectively. (These represent quite rapid convergence!) The results for 
g3 fit very nicely, those for g2 and g4 somewhat less so. For g2 this might 
be expected, because of the infinities of the integrand; for g4 we can only say 
that the expected behavior is not yet taking place for the values of N that we 
have used. 

Nevertheless, the convergence rate that we see for g4 is very fast-consider- 
ably faster than for g3, which is the smoothest possible function. This is in 
sharp contrast to what classical formulas-say the Gaussian-would do; the 
singularities of g4 at ? 1 would very much limit their convergence speed. That 
points up the fact that it is not, indeed, the nonanalyticity of the integrand at the 
endpoints that decides the convergence rate of (A) and (B), but only its growth 
as the endpoints are approached. A function such as g4, which has "half-zeros" 
at the endpoints, has its integral approximated more accurately than that of a 
function that is analytic at the endpoints but not zero there. 

(For completeness in describing the calculations, we note that for integrands 
gl, g2 and g3 the function q used in (B) was (1 + w)/2, while for g4 it was 
(2 + 3w - W3)/4.) 

It is interesting to see the actual form of the error function-the true indef- 
inite integral, minus the approximation-for these formulas. Figures 1 and 2 
show this function for the case of formula (A) with N = 25, for integrands g2 
and g4 respectively. In all cases the horizontal axis range is from -1 to + 1; 
in Figure 1 the vertical range is from -10-5 to +10-5 and in Figure 2 it is 
from -10-7 to +10-7. The curves obtained for the other g's are similar in 
shape to that in Figure 2. 

Figure 3 is another graph of the error function from Figure 2, but now the 
horizontal axis is scaled according to 0(s) instead of s; here, ((s) runs from 
-20 to 20. This stretches out the ends of the interval -1 < s < 1 so that the 
behavior of the error for s near ? 1 is shown more clearly. 

Figure 4 shows the error curve for formula (B) and the integrand g4; again, 
N is 25, the vertical range is from -10-6 to +10-6. The error curve for B 
and g2 is not shown as it is very similar to that in Figure 2. 
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APPENDIX 

Al. The calculation of an,. The sine integral is defined as 

lx 
I 

Si(x) = sin tdt, 
t 

and 

n = -Si(n7r). 

Since Si(-x) = -Si(x), we have O-n = -n and we need calculate an only 
for positive n. For large n we propose to use the asymptotic expansion 

(Al) 1 (l1)n+l ( 2! 4! ) ( A ) U r1_j + 1 - + 4r 2 7 (nir)2 (niQr J 4.. 

which is an immediate consequence of the asymptotic expansion for Si(x) given 
in [1]. It may be derived directly from the formula 

1 1lP?? sint 
an= ---idt 2 7r 7 

by successive integrations by parts, obtaining 

1 1 _n__ 2__ (_l) k (2k)! 
a=2 (-1 (n7r2 - n37r4 ++ n2k+ 72k+2 

7r 7;, t2k+2 ) 

The sign of the last integral is (-1)nf, so the remainder term is of opposite sign 
to the last retained term of the asymptotic series. Thus the error of truncating 
(Al) is no greater, in absolute value, than the first term not retained. Let us 
write 

(_ )n+k+1 (2k)! 
ak = n2k+1 ,r2k+2 

As long as 2k(2k - 1) < n2ir2, we have lakl < lak-1I, so that, if we truncate 
(Al) at the (K - 1)st term, where 

K = K(n)= [n 1 + l/(4n27f2) + 4 

we will be getting an as accurately as the asymptotic expansion can give it. The 
error (apart from roundoff) will be no greater than aK . 
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TABLE Al 
n K(n) IaK(n)I 
4 6 7.82E- 7 
5 8 3.09E- 8 
6 9 1.20E- 9 
7 11 4.81E-ll 

10 15 3.27E-15 
12 19 5.55E-18 
15 23 3.99E-22 
20 31 5.19E-29 

Table Al gives IaK(n) I for several values of n . Using such data, we deter- 
mine a value no for which the asymptotic expansion will allow the calculation 
of an to the desired accuracy for n > no. The algorithm for calculating an 
is completed by adding a table of a,, a2, ..., ano-1 . Those values may be 
obtained from Table 2.1 of [7]; or, if more accuracy is needed, they may be 
calculated by the method of [6] or by numerical integration. 

In the calculations described in this paper no was taken to be 12, and 18 
terms were used in the series (Al). 

A2. Calculation of Si(x). Since the sine integral is an odd function, we can 
confine ourselves to positive values of x. For 0 < x < Xr the series 

Si(X) = Z (2k-1) .(2k- 

(which is obtained by integrating the series for (sin t)/t) may conveniently be 
used. Seven terms suffice to give an answer correct to 17 decimal places. 

For x > Xr we used the following procedure: Set n = [x/ 7] and e = x - nnr . 
Since 

(A2) Si(x) = Si(n7t) + [l S dt = 7ra +( d t n 1r + S 
7r ~~~~~~~~~~~~~~n7r 

we evaluated the last integral numerically, and evaluated an by the method 
described above in this appendix. For the numerical integration, we used the 
9-point Gauss-Legendre formula. Numerical experiments showed that it will 
give the integral to 16-decimal-place accuracy for n up to 50, and apparently 
to 15 decimal places for all n. 

BIBLIOGRAPHY 

1. M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, U.S. Gov- 
ernment Printing Office, Washington, DC, 1964, Fomulas 5.2.8, 5.2.34, and 5.2.35. 

2. S. Haber, The tanh rulefor numerical integration, SIAM J. Numer. Anal. 14 (1977), 668-685. 

3. R.B. Kearfott, A Sinc approximation for the indefinite integral, Math. Comp. 41 (1983), 
559-572. 

4. J. McNamee, F. Stenger, and E. L. Whitney, Whittaker's cardinal function in retrospect, 
Math. Comp. 25 (1971), 141-154. 



296 SEYMOUR HABER 

5. K. Sikorski and F. Stenger, Optimal quadratures in Hp spaces, ACM Trans. Math. Software 
10 (1984), 140-151. 

6. I. A. Stegun and R. Zucker, Automatic computing methods for special functions, Part III. 
The Sine, Cosine, Exponential integrals and related functions, J. Res. Nat. Bur. Standards 
B, Mathematical Sciences 80B (1976), 291-31 1. 

7. F. Stenger, Numerical methods based on Whittaker cardinal, or Sinc functions, SIAM Rev. 
23 (1981), 165-224. 

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122 
E-mail address: shaber@templevm.bitnet 


